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Detecting process non-randomness through a fast and
cumulative learning ART-based pattern recognizer

H. B. HWARNG* and C. W. CHONG

An adaptive resonance theory (ART) based, general-purpose control chart pattern
recognizer (CCPR) which is capable of fast and cumulative learning is presented.
The implementation of this ART-based CCPR was made possible by introducing
two key alternatives, that is, incorporating a synthesis layer in addition to the
existing two-layer architecture and adopting a quasi-supervised training strategy.

tA detailed algorithm with the training and the testing modes was presented.
Extensive simulations and performance evaluations were conducted and proved
that this ART-based CCPR indeed possesses the capability of fast and cumulative
learning. When compared with a back-propagation pattern recognizer (BPPR), the
ART-based CCPR is superior on cyclic patterns, inferior on mixture patterns, and
comparable on other patterns. Furthermore, an ART-based CCPR is easier to
develop since it needs fewer training templates and takes less time to learn.
This study not only provides a basis for understanding the capabilities of ART-based
neural networks on control chart pattern recognition but re-confirms the
applicability of the neural network approach.

1. Introduction

The need for identifying patterns of data on statistical quality control charts was
realized early in the 1950’s (Western Electric 1956). Control chart patterns can
generally be classified into two categories, namely, random and non-random patterns.
When a control chart exhibits a random pattern it usually indicates that the process is
statistically in-control. On the other hand, when a control chart exhibits a non-random
pattern it indicates that the process is statistically out-of-control. From this perspective,
an out-of-control situation cannot be characterized merely by an observation falling
outside the control limits. All of the observations can fall well within the control limits
while still behaving non-randomly. This implies that the traditional way of using control
charts, based only on the control limits, is insufficient for detecting certain types of
non-randomness. Alternatively an effective and efficient system capable of detecting
process non-randomness through identification of non-random patterns on control
charts must be developed.

It was based on this understanding, under Western Electric’s statistical quality
control program, that engineers and shop floor operators were trained with additional
rules to identify the existence of non-randomness in the process and then to determine
its causes. The procedure is as follows:

(1) The type of pattern that a control chart represents is determined from the
inspection of the control chart;

(2) This pattern is compared with a set of pre-drawn patterns;

(3) The pattern is studied and related to what is known about the process;
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(4) Based on the suggested potential causes for the pattern, an attempt is made to
recall similar causes which might be operating in the process.

In Western Electric’s Statistical Quality Control Handbook a set of run rules was
devised to identify some patterns of instability. Additional verbal descriptions were also
given to assist in identifying other more complex non-random patterns. These rules or
variation of these rules for step 1 and 2 of the above procedure are still quite popular
in today’s literature and practices. It would be ideal if the above procedure could be
done automatically without human intervention. Nevertheless, the implementation of
the procedure is not as straightforward as we would expect. The major difficulties lie
in how the pattern can be identified automatically and how the causes can be deduced
from the identified pattern without the help of human interpretation. Besides, the major
problems associated with these rules are their inflexibility to tolerate any deviation from
the rules and their inability to explicitly identify which type of pattern.

Traditional run rules are useful in signalling if there is any structural change in the
mean and/or variance of the process; the pattern recognition approach, which explicitly
identifies non-random patterns, is more useful in identifying what particular type
of non-randomness is occurring in the process. Additional information about
non-randomness in the process then can be deduced through the identified non-random
pattern. This approach is not only more effective in determining corrective actions
but more flexible in 2 dynamic manufacturing environment. Recently the utility of
neural networks in identifying process non-randomness as exhibited on statistical
quality control charts has been demonstrated by a number of researchers (Lim and Ooi
1990, Lim et al. 1991, Guo and Dooley 1992, Hwarng and Hubele 1991, 1992, 1993a,
1993b).

In almost all of the published works, the major architecture used has been
back-propagation neural networks. Although the back-propagation algorithm has been
widely used and well studied, two well known problems, namely, slowness in training
and inability to perform adaptive learning without re-learning, still pose some
inconvenience for practical applications. Therefore, the objective of this research is to
investigate and develop a general-purpose control chart pattern recognizer (CCPR)
which is capable of fast and cumulative learning. It is general-purpose because it is
capable of identifying multiple patterns.

In this research, we adopted adaptive resonance theory (ART) (Carpenter and
Grossberg 1987, 1988) as the foundation for this CCPR. ART is adopted for two
distinctive features, that is, its ability to learn fast and its ability to retain previously
learned pattern classes, while adaptively learning new ones. Although there are a
number of varied ART architectures, we will confine our discussions to the binary
version of ART, ART1.

The paper is organized in the following manner. § 2 gives an overview of ART
concerning the architecture and general operation; §3 explains some limitations of
ART when applied to control chart pattern recognition; § 4 presents and describes the
proposed ART-based CCPR; § 5 discusses the performance of the ART-based CCPR.
Finally, § 6 concludes the paper with a summary and some additional comments.

2. Overview of ART: architecture and operation

The design principles of adaptive resonance neural networks originated from some
basic idea in Grossberg (1967). Since then a npumber of modifications and variations
have been developed to satisfy the needs of various situations. In this paper, we will
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deal with control chart data which are preprocessed into a binary format. Hence, we
will constrain ourselves to the simplest architecture, ART 1 of the ART family, which
is designed for binary input data.

It is understood that an ART network acts best as a pattern classifier. After proper
learning, an ART network accepts an input pattern and classifies it according to which
of the stored categories it resembles most. If the input pattern does not match any of
the stored categories, the input pattern will be stored as a new category. If the mismatch
between the input pattern and one of the stored cate gories is within a specified tolerance,
the input pattern will be classified into the same category as the stored category and
the critical features of the input pattern can be incorporated into the matching stored
category. In other words, the previously stored category can be adaptively modified
(through adaptive weights) to include the features of both the previous and the current
input patterns. However, such modification of weights is not allowed if the mismatch
is not within the specified tolerance.

2.1. Architecture :

An ART network consists of two layers, namely, the comparison layer (F1) and the
recognition layer (F2). Each layer comprises a number of nodes. Two layers are
interconnected by two sets of connection weights, ie., bottom-up and top-down
weights. In the most simplified terms, the comparison layer acts as a feature detector
which receives external input patterns and the recognition layer acts as a category
classifier which receives internal inputs from the comparison layer. Gain control
devices, G1 and G2, and the reset mechanism provide the control functions needed for
learning and classification. Figure 1 depicts the basic components of the ART
architecture. :

The patterns of activity that develop over the nodes in the two layers are called
shorts-term memory (STM) because they exist only in association with a single
application of an input pattern. The activities are the immediate response of the system
to external and internal stimuli. The bottom-up and top-down weights between FI and
F2 can be updated adaptively in response to the input patterns. This is when learning
takes place. These adaptive weights are called long-term memory (LTM) because they
can remain as a part of network for an extended period. For ease of reference, the ART
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Figure 1. Basic components of the ART architecture,
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architecture is usually described as two subsystems, namely, the attentional subsystem
and the orienting subsystem. The attentional subsystem is composed of F1,F2, G1, G2,
and the connection weights. The orienting subsystem is the reset mechanism which is
controlled by a parameter known as the vigilance parameter.

2.2. Operation

When an input pattern is presented to an ART network, the data are presented to
three places: F1, G1, and the reset mechanism as shown in Fig. 1. In addition to the
external input, F1 receives two other sources of input, i.e., from G1 and from F2.
The proper application of these three inputs at F1 is possible only if the activities at
F1 follow the % rule. The ¥: rule states that at least two out of the three sources of
input must be active to supraliminally activate a node in F1.

The output of F1 is then sent to F2 and the reset mechanism. The reset mechanism
not only receives inhibitory input from F1 but receives an excitatory input from the
external input. The reset mechanism initiates and transmits a reset signal to F2 whenever
the excitatory input overpowers the inhibitory input. This reset signal, if initiated, will
stop any activities that occur in F2 and hence prepare F2 for the next incoming pattern.
If the reset signal is not initiated, the previously coded pattern associated with the
category node which represents the ‘best match’ will be transmitted back to F1 as a
top-down template. An inhibitory signal will also be sent to G1 so that G1 will remain
inactive. Note that two gain control devices are incorporated so that F1 can distinguish
between bottom-up and top-down signals.

F1 deals only with the external input and the top-down template. Its activities are
governed by the orienting subsystem. If there is not a sufficient match between the
top-down template and the input pattern, the activity in F1 will decrease. A decrease
in F1 activities will cause the inhibitory input to the reset mechanism to be overpowered
by the excitatory input. The orienting subsystem will then generate a reset signal.
On the other hand, if there is a sufficient match, a state of resonance is said to be
achieved. The input pattern is then classified under the matching category. The decision
concerning whether the match is sufficient or not is regulated by the vigilance
parameter.

The reset signal generated by the orienting subsystem not only stops the activities
in F2 but removes the inhibition on G1 such that G1 acts as a second source of
stimulation to F1. This allows the input pattern to be reproduced in F1 and a re-matching
process to be started. During the re-matching process, however, the category nodes in
F2 which have failed to match the pattern previously are prevented from being matched
again. The entire process is repeated until a matching category is found, a new category
is created, or all the nodes in F2 are exhausted which means that the input pattern is
not sufficiently similar to any existing categories and there is no capacity in F2 for any
new category.

3. Limitations of ART in the implementation of control chart pattern recognition

While the ART architecture provides solutions for the two major concerns of
back-propagation networks as will be shown later, the use of ART does not guarantee
a success in control chart pattern recognition. In this section we will examine and
illustrate how some of the limitations would hinder the implementation of an

ART-based CCPR.
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3.1. Recoding instability

The first problem comes from ART’s recoding instability, The problem of recoding
instability was not entirely solved in the original design of ART (Ryan and Winter
1987). For example, once a new category was learned in F2, the top-down weights can
be gradually recoded in subsequent presentations of slightly varied new patterns. The
recoding can be so substantial that eventually the network does not recognize the
original pattern or patterns which are very similar to the original pattern. Figure 2
illustrates how this problem occurs in control chart pattern recognition. In the figure
each control chart pattern is represented by 1’s in a ¢( = 7) X r(=8) grid from top to
bottom. Data are coded into a binary format as follows. Each observation is represented
by a row of c binary digits. the sequence of ¢ binary digits corresponds to the ¢ zones
which equally divide the typical standardized range of a control chart, e.g., [ — 3, + 3].
The location of the 1 within the sequence corresponds to the zone in which the
standardized observation lies.

The network has been trained and encoded with two top-down templates which are
upward sudden-shifts and cycles. Four inputs of noisy upward sudden-shift are
presented to the network. On the fourth input, the network fails to classify it as category
1 because the top-down template has been recoded by the previous noisy upward
sudden-shifts. The input pattern fails the vigilance test. As a result, it is classified into
a new category.

3.2. Inability to classify translated patterns

The second problem arises from ART’s inability to classify shifted or rotated
patterns into the same category as the un-shifted or un-rotated patterns. Figure 3 shows
two cyclic patterns. One of the two was shifted downward by one row. The only
vigilance value which could classify both of them into the same category is zero.
A possible solution to this problem is to further preprocess shifted or rotated data so
as to have invariant forms. However, this will complicate data preprocessing.

3.3 Learned categories tend to outgrow the capacity

The third problem results from the unsupervised training environment. Under
unsupervised training, when an input pattern fails to match the learned top-down
templates during the vigilance test, the network always learns a new category provided
sufficient capacity in F2. This might not be desirable in control chart pattern recognition,
because, in the actual application, we are interested in only a number of non-random
patterns. When random patterns, which are anything other than the pre-specified
non-random patterns, are presented to the network, they should not be classified as new
non-random patterns. Nevertheless, under unsupervised training it is very likely that
many random patterns would be classified as new categories in F2, even if a low
vigilance value is used. Consequently, the network might grow very large in F2.
A supervised version of ART network, called ARTMAP (Carpenter et al. 1991), might
solve this problem. However, an ARTMAP network uses a much more complicated
architecture and requires more computer resource.

With the above three noted problems unsolved, the use of ART-based neural
networks cannot provide satisfactory results for control chart pattern recognition. In the
following, we will present a novel approach to solving these problems. The method is
rather simple, yet effective.
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Figure 2. An illustration of recoding instability.
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4. Proposed ART-based control chart pattern recognizer

4.1. A synthesis layer _

Overcoming these problems would involve using some alternative architecture and
training strategy. For the problem of recoding instability and that of inability to classify
shifted or rotated patterns, adding one additional layer on top of F2 alleviates the
dilemma. This layer is called the synthesis layer. Figure 4 shows the new ART
architecture. The synthesis layer is configured in such a way that one node is used to
connect in F2 all similar learned categories, which are either shifted or slightly varied,
into one class. In other words, for any input patterns, which are shifted or slightly varied,
the network will be able to classify them into a same class even though they might
belong to different categories in F2. Of course, this can only be done with some a priori
knowledge about the data. As an illustration in Fig. 4, the network has learned the shifted
cycles and upward trends. They are represented as distinguished categories in F2,
However, the shifted versions of patterns are connected to one shared node in the
synthesis layer. That is, three cyclic pattern categories are connected to node 1 and three
upward trend categories are connected to node 2 in the synthesis layer. The salient
feature of this approach is that it simplifies input considerations and relies on
synthesizing nodes to cluster shifted or rotated patterns.

4.2. Quasi-supervised training

To resolve the problem of learning too many new categories at F2, some
quasi-supervised training strategy based on prior knowledge about the process data
should be employed. The strategy is as follows:

(1) To generate or collect a representative set of non-random patterns which covers
the whole spectrum of patterns of interest and to group them according to
pattern classes;

(2) To configure the size of F2 to be the number of non-random patterns in the
training set;

(3) To present each pattern to the network once according to the pre-arranged
sequence during training and to adjust connection weights accordingly;

(4) Upon completion of training the number of learned categories in F2 should be
exactly the number of non-random patterns;

(5) In the synthesis layer one node is used to connect all similar categories in F2
into one class, called a pattern class. An additional node is created as ‘other’
class for all patterns that are not classified under any one of the learned
categories. Thus, the size of the synthesis layer should be configured to be one
plus the number of pattern classes of interest.

(6) During testing (recalling) weights are not modified and any patterns that are not
classified under any one of the learned categories will be placed under ‘other’
class in the synthesis layer, i.e., random patterns.

It should be noted that although the extent of the difficulties posed by the first two
problems mentioned earlier can be manipulated to a certain degree by the vigilance
parameter, it is necessary to resort to alternatives such as the ones suggested here in
order to eliminate the problems. With the additional synthesis layer which deals with
looser boundary conditions tackling the second problem, the original recognition layer
can remain at a more vigilant level, such that the first problem of recoding instability
can be alleviated.
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4.3. Algorithm

The ART neural network model is based on a set of ordinary non-linear differential
equations (Carpenter and Grossberg 1987). There are two modes of operation, i.e., slow
learning and fast learning. Slow learning operates according to the original result, which
was derived from differential equations and is rather complicated. Fast learning assumes
that the learned weights in the system will reach asymptotic stability before a new input
pattern is presented and the result can be reduced into a set of simpler formulae.
Therefore, it is faster. The network can be trained either with quasi-supervision or
without supervision. In the following, with reference to the steps given in Lippman
(1987), a quasi-supervised algorithm for the control chart pattern recognizer is
presented. Note that F1 refers to the comparison layer, F2 refers to the recognition layer,
and F3 refers to the synthesis layer.

INPUT: (In training mode)
A selective set of training data, matrix A, which is organized according
to the predetermined categories, and a prespecified value for the vigilance
parameter p. Matrix A has P rows witheach representing a training pattern.
(In testing mode)
A window of process data [X;,Xp, ..., Xn] and a prespecified value for the
vigilance parameter p.

OUTPUT: (In training mode)
A trained ART-based CCPR which has adaptively learned all predeter-
mined categories.
(In testing mode)
One of the pre-learned classes in F3 which indicates that the process
exhibits a certain non-random pattern, or ‘other’ class which indicates that
the process does not exhibit any of the pre-learned non-random patterns.

Step 1. Initialize top-down and bottom-up weights.
Top-down weights z;; are initialized according to
v—1
%{(0)>—— 1)
! ¢

Bottom-up weights z;; are initialized according to

0<z(0)< ()

T

T—1+N
where 1 <i <N and N is the number of nodes in F1; 1 <j<Mand M is
the number of nodes in F2; v, ¢, and t are constants satisfying the
following conditions: ¢ =0, =1, and max {¢, 1} <v< ¢+ 1.

Step 2. Apply the input pattern to F1.
A window of input pattern [Xi, X2, ...,Xn] i applied to F1. In general,
X; is applied to the i node of F1.

Step 3. Compute the weighted output activation at F2.

‘ N
m= 2 2% ©)

where 7; is the weighted output activation at node j of F2; z; is the
bottom-up weight from node i of F1 to node j of F2, and 1 <j =< M.
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Step 7.
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Select the winner at F2.
Let n» = max {#;}, 1 <1=<M. Node j* with the largest value 7; in F2 is
now selected as the winner.

Evaluate the similarity (or match).
The similarity measure, s, between the top-down template of the winning
node and the input pattern is computed as follows:

N

E zl*ixi
=h @

where zj+; is the top-down weights of the wmmng node and ||X]| is the norm
of the input pattern.

If s=p, then
(In training mode)

go to Step 7.

(In testing mode)
the pattern has been classified und%de j* of F2, It is then
synthesized under class c* in F3. Go to Step 2 for the next new
pattern.

If s <p, then
Go to Step 6.

Re-matching process (when s < p).
If all the patterns stored in F2 as top-down templates have not been
compared to the input pattern,
shut off the winning node and go to Step 3. This shut-off node will no
longer take part in Step 4.

If all the patterns stored in F2 as top-down templates have been compared
to the input pattern,
(In training mode)

if there are still unoccupied nodes in F2 the input pattern will be
learned as a new category. Go to Step 7.

(In testing mode)

the input is unclassified in F2 and is placed under the class
called ‘other’ in F3. Go to Step 2 for the next new pattern.

Adapt new weights (for training mode only).
Update top-down weights z; according to

et + 1) =2zp(Ox; i=1..N ®
and bottom-up weights z; according to
il £)X; .
p(t+1)= Y (N)x i=1..N ©)

=1+ 2 zu(t)ix
i=1

Go to Step 2 for the next training pattern.
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Figure 5. A training data set consists of 28 templates from eight pattern classes.
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to upward sudden-shifts; and templates 26 to 28 belong to downward sudden-shifts.
Two major principles of choosing the templates are coverage-broad and conflict-free.
Coverage-broad means that sufficient templates should be included to cover the whole
spectrum of patterns within each pattern class. Conflict-free requires that templates
with conflicting features between pattern classes should be avoided. With this
training set, an ART-based CCPR was configured to have 56 nodes in F1, 28 nodes
in F2, and 9 nodes in F3. Nodes in F3 represent eight non-random pattern classes
and one class termed ‘other’. The training was carried out by using the training mode
of the quasi-supervised algorithm presented in §4.3. The training time for this
ART-based CCPR is rather brief because the training simply goes through a single
pass of the training data set. Each training template eventually occupied one node in
F2 (p = 0-7). However, each class of templates were synthesized into one single class
in F3.

5.2. Performance measures and results

In order to compare the performance of the ART-based CCPR with that of a
previously developed back-propagation pattern recognizer, three performance
measures used here are rate of target (R,), average target pattern run length (ARL)),
and average target pattern run length index (ARL.) (Hwarng and Hubele 1993a). R,
is the percentage of sequences of data in which the target pattern was first detected
within a sequence of data of a limited length, i.e., measuring how frequently the CCPR
detects the target pattern. ARL, is the average run length of detecting the target pattern
within a sequence of data, i.e., measuring how quickly the target pattern can be detected
in a sequence of data. ARLy is defined as ARL/R, which measures the average run
length while considering the fact that some of the patterns cannot be detected within
the limited length of the data sequence.

In the following, performance evaluation is based on separately, independently
generated new testing data. R, is calculated based on 100 independent sequences of data.

Each sequence consists of 30 observations. ARL, is calculated in terms of the number
of classifying attempts. Also shown in the tables are the results produced by

back-propagation pattern recognizer (BPPR) (Hwarng and Hubele 1993a). The two
vigilance values for the ART-based CCPR are 0-6 and 0.7, while the two activation
cutoff values for the BPPR are 0-85 and 0-90. These parameters were chosen because
they produced approximately the same level of Type I errors.

The performance of the ART-based CCPR on trends is summarized in Table 1.
As shown, R, is sensitive to the level of random noise, i.e., the higher the noise, the
lower the R,. This is because high-noise trends tend to resemble sudden shifts. The
effect of vigilance parameter p is less significant when the slope is smaller. When a
trend is detected first, the trend can usually be detected within two attempts, i.e.,
ARL, <2, except one case. In general, the ART-based CCPR is comparable to the
BPPR.

The performance on cycles is summarized in Table 2. Similar to trends, R; is also
sensitive to the effect of random noise, i.e., the higher the noise, the lower the R..
However, it is possible to improve the performance on noisier cycles by learning
additional templates. R, tends to be slightly better as the amplitude increases. The effect
of vigilance parameter p is more significant when the noise level is higher. Most cycles
can be detected with an ARL, of two at low noise level. Even at high noise level, cycles
can be detected within an ARL, of 8. The ART-based CCPR slightly outperforms BPPR
on cycles with a higher amplitude and/or a higher level of random noise.
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ART Back-Propagation

Slope Noise Vig. R; Act. R,
(o) (0) ( (%) ARL: ARL, Cut (%) ARL, ARLx

0-15 01 06 99 1.00 1-01 0-85 100 150 1-50
07 99 1-42 1-42 090 100 1:50 1.50

0-25 01 0-6 100 1-00 1-00 0-85 100 1-00 1.00
07 100 1.02 1.02 090 100 1-01 101

035 01 0-6 100 1.00 1-00 0-85 91 1-00 1-09
) 07 100 1-00 1.00 0-90 91 1-00 107

0-15 03 0-6 78 1-15 1-48 0-85 93 223 2:40

07 82 1.69 2.07 090 88 227 2-58
025 03 0-6 94 1-05 112 0-85 98 1-04 1.06
07 90 143 1:59 090 96 1.07 1-11
0-35 03 06 94 1.02 1-09 0-85 62 1.02 1-65

0-7 78 1-13 1-45 0-90 57 1-02 1.79

0-15 05 0-6 55 1.44 2:61 0-85 77 2-89 375
07 56 268 478 090 71 317 4-46

025 0-5 0-6 74 1.34 1-81 0-85 76 1-50 1.97
07 56 1.80 3.22 090 71 1-62 228

035 0-5 06 76 1-18 1.56 0-85 44 1.09 248

07 47 1-15 2.44 090 37 1-05 2-84

Table 1. Performance evaluation of ART-based CCPR: upward trend patterns with various
slope and noise values.

ART Back-Propagation

Amp. Noise Vig. R, Act. R,
(0 (@) » (%) ARL; ARLy Cut. (%) ARL; ARL«

1-50 01 0-6 100 1.00 100 0-85 100 1-00 1-00
07 100 1-00 1-00 090 100 1-00 1-00
2:00 01 06 100 100 1.00 0-85 100 1.00 1.00
07 100 1.00 1-00 0-90 100 1-00 1.00
2-50 01 06 100 1.00 1-00 0-85 100 1-00 1-00
07 100 1-00 100 090 100 1-00 1-00
1-50 03 0-6 98 1.57 1-60 0-85 100 1-56 1-56
07 99 3.02 3-05 090 100 1.72 1.72
2.00 03 0-6 96 1-67 174 0-85 94 121 1-29
07 97 3-64 375 090 91 1-17 129
2-50 03 0-6 100 1.24 124 0-85 86 1.00 1-16
07 100 1-56 1-56 090 82 1-05 1.28
1-50 0-5 0-6 92 3-85 4-18 0-85 95 3.58 3.77
07 72 578 8-02 0-90 96 5-35 5-57
2.00 05 06 93 3.26 3-50 0-85 n 1.73 2-44
07 78 7-56 9-69 090 73 2:15 295
250 0-5 0-6 93 351 377 0-85 53 1-46 275
07 81 5-84 721 0-90 49 198 4.04

Table 2. Performance evaluation of ART-based CCPR: cyclic patterns (period = 8) with
various amplitude and noise values.
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The performance on systematic variable and on stratification is summarized in
Tables 3 and 4 respectively. Though there is a very minor indication of lower R, for
higher noise, the performance is quite outstanding and consistent over the range of the
parameters tested. It produces very few false alarms. This might be due to the fact that
there are fewer variations within these two pattern classes compared to other unnatural
patterns. Most systematic variables can be detected within an ARL, of 4, while most
stratification patterns can be detected within two attempts. Based on the given training
data, the BPPR is more consistent on these two patterns than the ART-based CCPR.

With a very limited number of templates, the performance on mixtures is quite poor
due to the random nature of the mixture patterns. This result is consistent with the
observation and the guideline from our previous experience (Hwarng and Hubele
1993b). That is, the amount of training data should be approximately proportional to
the complexity and irregularity of the pattern. To further verify it, we augmented the
training data set by incorporating 21 additional templates for mixture patterns.
The network was subsequently trained with these additional templates. Table 5
summarizes the performance based on the original and the augmented data sets.
As evidenced, the performance is quite consistent and improved substantially. R, seems
to be better as the magnitude increases. In general, when a mixture pattern is detected,
the mixture pattern can usually be detected within an ARL, of 7, except in one case.

5.3. Cumulative learning with an augmented training set

One of the advantages for using ART in this application is its ability to preserve
previously learned categories while learning new categories. This characteristic,
cumulative learning, was verified by the above training with the augmented data set.
After the second round of training, the class for mixtures was enforced as just discussed.
The concern now is whether the network’s ability to detect other pattern classes has
degenerated. Further testing proved that the capability of recognizing previously

learned categories was preserved. Table 6 lists the results of the verification test on some
of the previous testing data for systematic variables and cycles. As evidenced, the effect
of these augmented mixture templates on these two previously learned categories is
negligible. The seeming drop of R, for systematic (1-5a, 0-56) is because some of the
new mixture templates are similar to systematic variables. This phenomenon once again
affirms the principle of conflict-free. That is, the recognition capability can be degraded
or never be achieved when conflicting natures between pattern classes are included in
the training data.

5.4. Other issues

In interpreting the results presented here, some explanation on Type I errors should
be in place as well, otherwise the utility of this approach would be questionable.
Type 1 errors were measured by testing the CCPR on random patterns and calculating
the average run length of signalling a non-random pattern. When vigilance parameter
p=0-6, the ARLyx is 7-2—an apparent indication of unacceptable Type I errors.
When vigilance parameter p =0-7, the ARL,x was improved to 25—a somewhat
acceptable value as most of the ARL,’s for non-random patterns are under 3 or 4.
It is natural to argue that this level of Type I errors is still too high. Upon close
examination of the false signals generated, it was found that a majority of these falsely
identified patterns were classified under stratification. Noting that stratification is
characterized by observations hugging the process mean with a small deviation from
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ART Back-Propagation
Mag. = Noise  Vig. R; Act. R;
(o) (0) » (%) ARL; ARLyx Cut. (%) ARL, ARLy

1-50 0-1 0-6 100 1.00 1-00 0-85 100 1-00
07 100 1-00 1.00 0-90 100 1-00
2-00 01 06 100 1-02 1-02 0-85 100 1-00 1-00
0.7 100 1-08 1.08 090 100 1.00
2-50 01 06 100 1-00 1-00 0-85 100 -00
07 100 1-00 1-.00 0-90 100 1-00 1.00
1-50 03 06 99 1-48 1-50 0-85 100 1-52 1.52
07 99 3-40 3.44 090 100 190 1.90
2-00 03 0-6 99 1-24 126 0-85 100 1-00 100
07 98 290 2:96 0-90 100 101 1.01
250 03 0-6 100 1.02 1.02 0-85 100 1.00 1-00

0-7 99 1.22 1-24 0-90 100 1-00 1-00
1-50 0-5 0-6 98 439 4.48 0-85 100 1-85 1.85
0.7 87 6-03 694 0-90 100 2-59 259

2-00 05 0-6 96 2:02 211 0-85 100 1.01 1.01
07 96 202 2-11 0-90 100 1-05 1.05
2-50 0-5 06 100 1-10 1-10 0-85 100 1.01 1-01
07 100 2:56 2-56 090 100 1-01 1.01

Table 3. Performance evaluation of ART-based CCPR: systematic patterns with various
magnitude and noise values.

Offset ART Back-Propagation
from ‘
mean Noise Vig. R, Act. R,

(o) (o) ) (%) ARL; ARLy Cut. (%) ARL, ARLy

-020 01 0-6 100 1-00 1.00 0-85 100 1-00 1.00
0-7 100 1.00 1-00 0-90 100 1-00 1-00

000 01 06 100 1.00 1-00 0-85 100 1-00 1-00
07 100 1-00 1-00 0-90 100 1.00 1-00

020 01 0-6 100 100 1.00 0-85 100 -~ 100 1-00
07 100 1-00 1-00 0-90 100 1.00 1.00

-020 02 06 97 1-00 1.03 0-85 100 1.24 1-24
0-7 100 1-14 1-14 090 100 1-34 1-34

000 02 0-6 100 1-00 1-00 0-85 100 1.03 1-03

020 02 06 99 1.02 1-03 0-85 100 1-14 1-14
-020 03 0-6 90 128 1-42 0-85 98 211 2-15
000 03 06 99 1-02 1-03 0-85 100 126 1.26

020 03 0-6 95 1.08 1-14 0-85 100 176 1.76
07 9 208 2:17 0-90 100 2:08 208

Table 4. Performance evaluation of ART-based CCPR: stratification patterns with various
magnitude and noise values.
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Original training set Augmented training set
Mag. Noise  Vig. R, R;
(@) () ® (% ARL, ARLy (%)  ARL,  ARLy
1.75 01 06 32 125 391 89 1.18 1.32
07 27 426 15-80 85 2-56 3.02
2:00 01 0-6 47 1.83 390 97 1-01 1.04
0.7 32 6-13 19-10 92 1-64 1.78
225 01 06 1 8:00 8-00 93 1-00 1.07
0-7 0 — — 93 1-13 1-21
1.75 02 06 33 130 395 92 217 2:36
07 44 170 3.-87 85 6-53 7-68
2-00 0-2 0-6 54 3.98 7-37 91 1-69 1.86
0.7 36 8-89 24.70 87 4.43 5-09
225 02 06 8 11.50 143-80 96 1.03 1.07
07 5 12.00  240-00 98 1.65 1.69 .
1-75 03 06 43 2:44 5-68 87 224 2.58
07 39 923 23.70 83 8-54 1030
2-00 03 06 47 4.15 8-82 93 1-80 1.93
07 26 992 38.20 95 698 7-35
225 03 06 14 11-60 82.70 93 1-13 121
07 5 1440  288-00 95 3.16 332

Table 5. Performance evaluation of ART-based CCPR: mixture patterns with various
magnitude and noise values.

Mag. Noise Training R;
@) (o)  data set (% ARL; ARLy
1-5 03 Original 99 1-48 1.50
Augmented 96 1-35 1-41
15 05 Original 98 439 448
Augmented 82 . 361 4.40

(a) systematic patterns

Amp. Noise Training R:
(o) (o) data set (%) ARL, ARL,
1.5 01 Original 100 1.00 1.00
Augmented 100 1-00 1-00
15 03 Original 98 1-57 1-60
Augmented 96 1-42 1-48

(b) cyclic patterns
Table 6. Effects of augmented training data set on performance (p = 0-6).
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the mean, it is reasonable that stratification with noise could be easily produced even
under a random process. However, the chance of producing a long sequence of
stratification or other patterns is small under a random process. Therefore, a solution
to improving Type I errors under the current setting is to increase the number of
observations in a classifying window. Recall that a small window size was used in order
to test the ART-based CCPR’s ability to recognize a legitimate pattern with the least
number of observations. In practice, this window size should be adjusted (most likely
increased) according to the nature of the process. In our simulation, the ARLy was
improved to 116 when the CCPR signalled only if two patterns in a row were detected.
With more observations in a classifying window, the classified results are expected to
be more reliable as well.

Concerning ease-of-use between ART-based and BP-based CCPRs, it can be
discussed from the following aspects. First, ART is more selective in the selection of
training patterns, however, it needs much fewer templates than BP. Second, it is rather
easy to configure an ART-based CCPR since it does not need to configure the hidden
layer(s) as in BP. Third, it is much faster to train an ART and the learning behaviour
is more predictable as well. Fourth, testing times of various patterns for ART are varied
while they are constant for BP. Fifth, ART is easier to adapt to new applications since
it can learn fast and cumulatively. Finally, ART has fewer critical parameters to set.
The settings of vigilance parameter p during training and testing are similar to the
settings of training-terminating errors and output activation-cutoff values in BP.

6. Conclusions

Among various approaches to detecting process non-randomness, the pattern
recognition approach applied to control charts is a promising one. With their learning
capability and computing power, neural networks seem to have produced a pragmatic
platform for implementing control chart pattern recognition in real-world situations.
However, as often seen in some network architectures, slowness in learning and
inability to perform adaptive learning without re-learning still pose some inconvenience
for practical applications. Hence, the objective of current research is to investigate and
develop a control chart pattern recognizer which is capable of fast and cumulative
learning.

Taking advantage of its design principles and architecture, ART was adopted as a
foundation. However, inherent limitations of ART cause some intolerable difficulties
in the implementation of control chart pattern recognition. In this paper, we proposed
some alternatives and presented an ART-based, general-purpose control chart pattern
recognizer which is capable of fast and cumulative learning. Unlike supervised
ARTMAP, this quasi-supervised approach adopts a rather simple architecture yet
achieves flexible and effective clustering. The implementation of this ART-based
CCPR was made possible by introducing two key alternatives, that is, incorporating
a synthesis layer in addition to the existing two-layer architecture and adopting a
quasi-supervised training strategy. A detailed algorithm with the training and the testing
modes was presented. Extensive simulation and performance evaluation were
conducted and proved that this ART-based CCPR indeed possesses the capability of
fast and cumulative learning. When compared with a back-propagation pattern
recognizer (BPPR), the ART-based CCPR is superior on cyclic patterns, inferior on
mixture patterns, and comparable on other patterns. However, it should be noted that
the comparison made here is based on two particular training data sets and can only
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serve as a basis for understanding the capabilities of these two neural network
architectures on control chart pattern recognition. ,

Although this paper demonstrated the feasibility and the utility of a general-purpose
CCPR, an ART-based CCPR can be designed to accommodate the specific needs of a
particular process and may produce even more satisfactory results. It is believed that
an ART-based CCPR such as the one proposed here can be readily integrated into a
dynamic manufacturing environment as a key component of an automated SPC system.
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